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align Align two NMF models

Description

Align two NMF models

Usage

align(object, ...)

## S4 method for signature 'nmf'
align(object, ref, method = "cosine", ...)

Arguments

object nmf model to be aligned to ref

... arguments passed to or from other methods

ref reference nmf model to which object will be aligned

method either cosine or cor
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Details

For nmf models, factors in object are reordered to minimize the cost of bipartite matching (see
bipartiteMatch) on a cosine or correlation distance matrix. The w matrix is used for matching,
and must be equidimensional in object and ref.

align_models Align two matrices with bipartite matching

Description

Same as the align S4 method for the ‘nmf‘ class, but operates only on the ‘w‘ matrices.

Usage

align_models(w, wref, method = "cosine", ...)

Arguments

w matrix with columns to be aligned to columns in wref

wref reference matrix to which columns in w will be aligned

method distance metric (either cor or cosine) to use for constructing the cost matrix

... additional arguments

aml Acute Myelogenous Leukemia cells

Description

DNA methylation in ~800 regions in 123 Acute Myelogenous Leukemia (AML) samples classified
by probable cell of origin (GMP, L-MPP, or MEP), and 5 samples from healthy references for each
suspected cell of origin (GMP, L-MPP, MEP).

Usage

data(aml)

Format

list of dense matrix of features (methylated regions) as rows and samples ("AML" or "Control"
samples, classified by putative cell of origin or reference cell type) as columns. The "metadata_h"
maps to publicly available clinical metadata.
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Details

AML methylation signatures differ from their cell of origin by additive methylation and subtractive
methylation, in addition to tumor-specific heterogeneity. These AML tumors likely originated from
one of three healthy cell types (GMP, LMPP, or MEP), the challenge is to classify the cell of origin
based on these healthy cell type DMRs.

bipartiteMatch Bipartite graph matching

Description

Hungarian algorithm for matching samples in a bipartite graph from a distance ("cost") matrix

Usage

bipartiteMatch(x)

Arguments

x symmetric matrix giving the cost of every possible pairing

Details

This implementation was adapted from RcppHungarian, an Rcpp wrapper for the original C++
implementation by Cong Ma (2016).

Value

List of "cost" and "pairs"

bipartition Bipartition a sample set

Description

Spectral biparitioning by rank-2 matrix factorization

Usage

bipartition(data, tol = 1e-05, nonneg = TRUE, ...)
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Arguments

data dense or sparse matrix of features in rows and samples in columns. Prefer
matrix or Matrix::dgCMatrix, respectively

tol tolerance of the fit
nonneg enforce non-negativity of the rank-2 factorization used for bipartitioning
... development parameters

Details

Spectral bipartitioning is a popular subroutine in divisive clustering. The sign of the difference
between sample loadings in factors of a rank-2 matrix factorization gives a bipartition that is nearly
identical to an SVD.

Rank-2 matrix factorization by alternating least squares is faster than rank-2-truncated SVD (i.e.
irlba).

This function is a specialization of rank-2 nmf with support for factorization of only a subset of
samples, and with additional calculations on the factorization model relevant to bipartitioning. See
nmf for details regarding rank-2 factorization.

Value

A list giving the bipartition and useful statistics:

• v : vector giving difference between sample loadings between factors in a rank-2 factorization
• dist : relative cosine distance of samples within a cluster to centroids of assigned vs. not-

assigned cluster
• size1 : number of samples in first cluster (positive loadings in ’v’)
• size2 : number of samples in second cluster (negative loadings in ’v’)
• samples1: indices of samples in first cluster
• samples2: indices of samples in second cluster
• center1 : mean feature loadings across samples in first cluster
• center2 : mean feature loadings across samples in second cluster

Advanced Parameters

Several parameters may be specified in the ... argument:

• diag = TRUE: scale factors in w and h to sum to 1 by introducing a diagonal, d. This should
generally never be set to FALSE. Diagonalization enables symmetry of models in factorization
of symmetric matrices, convex L1 regularization, and consistent factor scalings.

• samples = 1:ncol(A): samples to include in bipartition, numbered from 1 to ncol(A). De-
fault is all samples.

• calc_dist = TRUE: calculate the relative cosine distance of samples within a cluster to either
cluster centroid. If TRUE, centers for clusters will also be calculated.

• seed = NULL: random seed for model initialization, generally not needed for rank-2 factoriza-
tions because robust solutions are recovered when diag = TRUE

• maxit = 100: maximum number of alternating updates of w and h. Generally, rank-2 factor-
izations converge quickly and this should not need to be adjusted.
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Author(s)

Zach DeBruine

References

Kuang, D, Park, H. (2013). "Fast rank-2 nonnegative matrix factorization for hierarchical document
clustering." Proc. 19th ACM SIGKDD intl. conf. on Knowledge discovery and data mining.

See Also

nmf, dclust

Examples

## Not run:
library(Matrix)
data(iris)
A <- as(as.matrix(iris[,1:4]), "dgCMatrix")
bipartition(A, calc_dist = TRUE)

## End(Not run)

biplot,nmf-method Biplot for NMF factors

Description

Produces a biplot from the output of nmf

Usage

## S4 method for signature 'nmf'
biplot(x, factors = c(1, 2), matrix = "w", group_by = NULL, ...)

Arguments

x an object of class "nmf"

factors length 2 vector specifying factors to plot.

matrix either w or h

group_by a discrete factor giving groupings for samples or features. Must be of the same
length as number of samples in object$h or number of features in object$w.

... for consistency with biplot generic

Value

ggplot2 object
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See Also

nmf

cosine Cosine similarity

Description

Column-by-column Euclidean norm cosine similarity for a matrix, pair of matrices, pair of vectors,
or pair of a vector and matrix. Supports sparse matrices.

Usage

cosine(x, y = NULL)

Arguments

x matrix or vector of, or coercible to, class "dgCMatrix" or "sparseVector"

y (optional) matrix or vector of, or coercible to, class "dgCMatrix" or "sparseVec-
tor"

Details

This function takes advantage of extremely fast vector operations and is able to handle very large
datasets.

cosine applies a Euclidean norm to provide very similar results to Pearson correlation. Note that
negative values may be returned due to the use of Euclidean normalization when all associations
are largely random.

This function adopts the sparse matrix computational strategy applied by qlcMatrix::cosSparse,
and extends it to any combination of single and/or pair of sparse matrix and/or dense vector.

Value

dense matrix, vector, or value giving cosine distances
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crossValidate Cross-validation for NMF

Description

Find an "optimal" rank for a Non-Negative Matrix Factorization using cross-validation. Returns a
data.frame with class nmfCrossValidate. Plot results using the plot class method.

Usage

crossValidate(data, k, reps = 3, n = 0.05, verbose = FALSE, ...)

## S3 method for class 'nmfCrossValidate'
plot(x, ...)

Arguments

data dense or sparse matrix of features in rows and samples in columns. Prefer
matrix or Matrix::dgCMatrix, respectively

k array of factorization ranks to test

reps number of independent replicates to run

n fraction of values to handle as missing (default is 5%, or 0.05)

verbose should updates be displayed when each factorization is completed

... parameters to RcppML::nmf, not including data or k

x nmfCrossValidate object, the result of crossValidate

Details

A random speckled pattern of values is masked off during model fitting, and the mean squared error
of prediction is evaluated after the model has reached the desired tolerance. The rank at which the
model achieves the lowest error (best prediction accuracy) is the optimal rank.

Value

data.frame with class nmfCrossValidate with columns rep, k, and value

See Also

nmf
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dclust Divisive clustering

Description

Recursive bipartitioning by rank-2 matrix factorization with an efficient modularity-approximate
stopping criteria

Usage

dclust(
A,
min_samples,
min_dist = 0,
tol = 1e-05,
maxit = 100,
nonneg = TRUE,
seed = NULL

)

Arguments

A matrix of features-by-samples in sparse format (preferred class is "Matrix::dgCMatrix")

min_samples stopping criteria giving the minimum number of samples permitted in a cluster

min_dist stopping criteria giving the minimum cosine distance of samples within a cluster
to the center of their assigned vs. unassigned cluster. If 0, neither this distance
nor cluster centroids will be calculated.

tol in rank-2 NMF, the correlation distance (1−R2) between w across consecutive
iterations at which to stop factorization

maxit maximum number of fitting iterations

nonneg in rank-2 NMF, enforce non-negativity

seed random seed for rank-2 NMF model initialization

Details

Divisive clustering is a sensitive and fast method for sample classification. Samples are recursively
partitioned into two groups until a stopping criteria is satisfied and prevents successful partitioning.

See nmf and bipartition for technical considerations and optimizations relevant to bipartitioning.

Stopping criteria. Two stopping criteria are used to prevent indefinite division of clusters and tune
the clustering resolution to a desirable range:

• min_samples: Minimum number of samples permitted in a cluster

• min_dist: Minimum cosine distance of samples to their cluster center relative to their unas-
signed cluster center (an approximation of Newman-Girvan modularity)
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Newman-Girvan modularity (Q) is an interpretable and widely used measure of modularity for a
bipartition. However, it requires the calculation of distance between all within-cluster and between-
cluster sample pairs. This is computationally intensive, especially for large sample sets.

dclust uses a measure which linearly approximates Newman-Girvan modularity, and simply re-
quires the calculation of distance between all samples in a cluster and both cluster centers (the
assigned and unassigned center), which is orders of magnitude faster to compute. Cosine distance
is used instead of Euclidean distance since it handles outliers and sparsity well.

A bipartition is rejected if either of the two clusters contains fewer than min_samples or if the mean
relative cosine distance of the bipartition is less than min_dist.

A bipartition will only be attempted if there are more than 2 * min_samples samples in the cluster,
meaning that dist may not be calculated for some clusters.

Reproducibility. Because rank-2 NMF is approximate and requires random initialization, results
may vary slightly across restarts. Therefore, specify a seed to guarantee absolute reproducibility.

Other than setting the seed, reproducibility may be improved by setting tol to a smaller number to
increase the exactness of each bipartition.

Value

A list of lists corresponding to individual clusters:

• id : character sequence of "0" and "1" giving position of clusters along splitting hierarchy

• samples : indices of samples in the cluster

• center : mean feature expression of all samples in the cluster

• dist : if applicable, relative cosine distance of samples in cluster to assigned/unassigned cluster
center.

• leaf : is cluster a leaf node

Author(s)

Zach DeBruine

References

Schwartz, G. et al. "TooManyCells identifies and visualizes relationships of single-cell clades".
Nature Methods (2020).

Newman, MEJ. "Modularity and community structure in networks". PNAS (2006)

Kuang, D, Park, H. (2013). "Fast rank-2 nonnegative matrix factorization for hierarchical document
clustering." Proc. 19th ACM SIGKDD intl. conf. on Knowledge discovery and data mining.

See Also

bipartition, nmf
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Examples

## Not run:
data(USArrests)
A <- Matrix::as(as.matrix(t(USArrests)), "dgCMatrix")
clusters <- dclust(A, min_samples = 2, min_dist = 0.001)
str(clusters)

## End(Not run)

evaluate Evaluate an NMF model

Description

Calculate mean squared error for an NMF model, accounting for any masking schemes requested
during fitting.

Usage

evaluate(x, ...)

## S4 method for signature 'nmf'
evaluate(x, data, mask = NULL, missing_only = FALSE, ...)

Arguments

x fitted model, class nmf, generally the result of calling nmf, with models of equal
dimensions as data

... development parameters

data dense or sparse matrix of features in rows and samples in columns. Prefer
matrix or Matrix::dgCMatrix, respectively

mask dense or sparse matrix of values in data to handle as missing. Prefer Matrix::dgCMatrix.
Alternatively, specify "zeros" or "NA" to mask either all zeros or NA values.

missing_only calculate mean squared error only for missing values specified as a matrix in
mask
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hawaiibirds Bird species frequency in Hawaii

Description

Frequency of bird species observation within 1km-squared grids in Hawaii as recorded in the eBird
project. Not all counts are complete because some grids are sampled better than others (i.e. urban
areas, birding hotspots).

Usage

data(hawaiibirds)

Format

list of three components: counts giving mean total counts of species in each grid, metadata_h
giving information about each grid (i.e. latitude, longitude, and island), and metadata_w giving
information about species taxonomic classification.

Details

This dataset was obtained as follows:

• All eBird observations in Hawaii were downloaded from the eBird website as of Oct. 2021

• Only complete checklists were retained

• Only non-X counts were retained

• Species were removed with fewer than 50 observations or that were spuhs

• Grids were defined by latitude/longitude rounded to two decimal places

• Grids were removed with fewer than 10 checklists

• Mean frequency of species in each grid was calculated based on the number of times a species
was observed and the number of checklists submitted in that grid.

• Grids were assigned to one of each major Hawaiian island based on geographical coordinates.

lnmf Linked non-negative matrix factorization

Description

Run lNMF on a list of datasets to separate shared and unique signals.
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Usage

lnmf(
data,
k_wh,
k_uv,
tol = 1e-04,
maxit = 100,
L1 = c(0, 0),
L2 = c(0, 0),
seed = NULL,
mask = NULL

)

Arguments

data list of dense or sparse matrices giving features in rows and samples in columns.
Rows in all matrices must correspond exactly. Prefer matrix or Matrix::dgCMatrix,
respectively

k_wh rank of the shared factorization

k_uv ranks of the unique factorizations, an array corresponding to each dataset pro-
vided

tol tolerance of the fit

maxit maximum number of fitting iterations

L1 LASSO penalties in the range (0, 1], single value or array of length two for c(w
& u, h & v)

L2 Ridge penalties greater than zero, single value or array of length two for c(w &
u, h & v)

seed single initialization seed or array of seeds. If multiple seeds are provided, the
model with least mean squared error is returned.

mask list of dense or sparse matrices indicating values in data to handle as missing.
Prefer Matrix::ngCMatrix. Alternatively, specify a string "zeros" or "NA" to
mask either all zeros or NA values.

Details

Detailed documentation to come

Value

an object of class lnmf

Author(s)

Zach DeBruine
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References

DeBruine, ZJ, Melcher, K, and Triche, TJ. (2021). "High-performance non-negative matrix factor-
ization for large single-cell data." BioRXiv.

See Also

nmf, nnls

movielens Movie ratings

Description

~250,000 Ratings of ~3800 movies across 19 genres by 610 users on a scale of 1 to 5 stars. Zeros
indicate no rating.

Usage

data(movielens)

Format

list of two components: ratings matrix in Matrix::dgCMatrix format of movies (rows) vs. users
(columns), and genres as a sparse logical matrix in Matrix::lgCMatrix format, giving genres
(rows) to which each movie (columns) is assigned.

Details

This dataset was derived from https://grouplens.org/datasets/movielens/ (ml-latest-small.zip), and
movies without a genre assignment were removed. Half-star ratings were rounded up. Movies with
fewer than 5 ratings were removed.

mse Mean squared error of factor model

Description

Same as the evaluate S4 method for the nmf class, but allows one to input the ‘w‘, ‘d‘, ‘h‘, and
‘data‘ independently.

Usage

mse(w, d = NULL, h, data, mask = NULL, missing_only = FALSE, ...)
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Arguments

w feature factor matrix (features as rows)

d scaling diagonal vector (if applicable)

h sample factor matrix (samples as columns)

data dense or sparse matrix of features in rows and samples in columns. Prefer
matrix or Matrix::dgCMatrix, respectively

mask dense or sparse matrix of values in data to handle as missing. Prefer Matrix::dgCMatrix.
Alternatively, specify "zeros" or "NA" to mask either all zeros or NA values.

missing_only only calculate mean squared error at masked values

... additional arguments

nmf Non-negative matrix factorization

Description

High-performance NMF of the form A = wdh for large dense or sparse matrices, returns an object
of class nmf.

Usage

nmf(
data,
k,
tol = 1e-04,
maxit = 100,
L1 = c(0, 0),
L2 = c(0, 0),
seed = NULL,
mask = NULL,
...

)

Arguments

data dense or sparse matrix of features in rows and samples in columns. Prefer
matrix or Matrix::dgCMatrix, respectively

k rank

tol tolerance of the fit

maxit maximum number of fitting iterations

L1 LASSO penalties in the range (0, 1], single value or array of length two for c(w,
h)

L2 Ridge penalties greater than zero, single value or array of length two for c(w,
h)
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seed single initialization seed or array, or a matrix or list of matrices giving initial w.
For multiple initializations, the model with least mean squared error is returned.

mask dense or sparse matrix of values in data to handle as missing. Prefer Matrix::dgCMatrix.
Alternatively, specify "zeros" or "NA" to mask either all zeros or NA values.

... development parameters

Details

This fast NMF implementation decomposes a matrix A into lower-rank non-negative matrices w
and h, with columns of w and rows of h scaled to sum to 1 via multiplication by a diagonal, d:

A = wdh

The scaling diagonal ensures convex L1 regularization, consistent factor scalings regardless of ran-
dom initialization, and model symmetry in factorizations of symmetric matrices.

The factorization model is randomly initialized. w and h are updated by alternating least squares.

RcppML achieves high performance using the Eigen C++ linear algebra library, OpenMP paral-
lelization, a dedicated Rcpp sparse matrix class, and fast sequential coordinate descent non-negative
least squares initialized by Cholesky least squares solutions.

Sparse optimization is automatically applied if the input matrix A is a sparse matrix (i.e. Matrix::dgCMatrix).
There are also specialized back-ends for symmetric, rank-1, and rank-2 factorizations.

L1 penalization can be used for increasing the sparsity of factors and assisting interpretability.
Penalty values should range from 0 to 1, where 1 gives complete sparsity.

Set options(RcppML.verbose = TRUE) to print model tolerances to the console after each iteration.

Parallelization is applied with OpenMP using the number of threads in getOption("RcppML.threads")
and set by option(RcppML.threads = 0), for example. 0 corresponds to all threads, let OpenMP
decide.

Value

object of class nmf

Slots

w feature factor matrix

d scaling diagonal vector

h sample factor matrix

misc list often containing components:

• tol : tolerance of fit
• iter : number of fitting updates
• runtime : runtime in seconds
• mse : mean squared error of model (calculated for multiple starts only)
• w_init : initial w matrix used for model fitting
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Methods

S4 methods available for the nmf class:

• predict: project an NMF model (or partial model) onto new samples

• evaluate: calculate mean squared error loss of an NMF model

• summary: data.frame giving fractional, total, or mean representation of factors in sam-
ples or features grouped by some criteria

• align: find an ordering of factors in one nmf model that best matches those in another nmf
model

• prod: compute the dense approximation of input data

• sparsity: compute the sparsity of each factor in w and h

• subset: subset, reorder, select, or extract factors (same as [)

• generics such as dim, dimnames, t, show, head

Author(s)

Zach DeBruine

References

DeBruine, ZJ, Melcher, K, and Triche, TJ. (2021). "High-performance non-negative matrix factor-
ization for large single-cell data." BioRXiv.

Lin, X, and Boutros, PC (2020). "Optimization and expansion of non-negative matrix factorization."
BMC Bioinformatics.

Lee, D, and Seung, HS (1999). "Learning the parts of objects by non-negative matrix factorization."
Nature.

Franc, VC, Hlavac, VC, Navara, M. (2005). "Sequential Coordinate-Wise Algorithm for the Non-
negative Least Squares Problem". Proc. Int’l Conf. Computer Analysis of Images and Patterns.
Lecture Notes in Computer Science.

See Also

project, mse, nnls

Examples

## Not run:
# basic NMF
model <- nmf(rsparsematrix(1000, 100, 0.1), k = 10)

# compare rank-2 NMF to second left vector in an SVD
data(iris)
A <- Matrix::as(as.matrix(iris[, 1:4]), "dgCMatrix")
nmf_model <- nmf(A, 2, tol = 1e-5)
bipartitioning_vector <- apply(nmf_model$w, 1, diff)
second_left_svd_vector <- base::svd(A, 2)$u[, 2]
abs(cor(bipartitioning_vector, second_left_svd_vector))
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# compare rank-1 NMF with first singular vector in an SVD
abs(cor(nmf(A, 1)$w[, 1], base::svd(A, 2)$u[, 1]))

# symmetric NMF
A <- crossprod(rsparsematrix(100, 100, 0.02))
model <- nmf(A, 10, tol = 1e-5, maxit = 1000)
plot(model$w, t(model$h))
# see package vignette for more examples

## End(Not run)

nnls Non-negative least squares

Description

Solves the equation a %*% x = b for x subject to x > 0.

Usage

nnls(a, b, cd_maxit = 100L, cd_tol = 1e-08, L1 = 0, L2 = 0, upper_bound = 0)

Arguments

a symmetric positive definite matrix giving coefficients of the linear system

b matrix giving the right-hand side(s) of the linear system

cd_maxit maximum number of coordinate descent iterations

cd_tol stopping criteria, difference in x across consecutive solutions over the sum of x

L1 L1/LASSO penalty to be subtracted from b

L2 Ridge penalty by which to shrink the diagonal of a

upper_bound maximum value permitted in solution, set to 0 to impose no upper bound

Details

This is a very fast implementation of sequential coordinate descent non-negative least squares
(NNLS), suitable for very small or very large systems. The algorithm begins with a zero-filled
initialization of x.

Least squares by sequential coordinate descent is used to ensure the solution returned is exact.
This algorithm was introduced by Franc et al. (2005), and our implementation is a vectorized and
optimized rendition of that found in the NNLM R package by Xihui Lin (2020).

Value

vector or matrix giving solution for x
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Author(s)

Zach DeBruine

References

DeBruine, ZJ, Melcher, K, and Triche, TJ. (2021). "High-performance non-negative matrix factor-
ization for large single-cell data." BioRXiv.

Franc, VC, Hlavac, VC, and Navara, M. (2005). "Sequential Coordinate-Wise Algorithm for the
Non-negative Least Squares Problem. Proc. Int’l Conf. Computer Analysis of Images and Patterns."

Lin, X, and Boutros, PC (2020). "Optimization and expansion of non-negative matrix factorization."
BMC Bioinformatics.

Myre, JM, Frahm, E, Lilja DJ, and Saar, MO. (2017) "TNT-NN: A Fast Active Set Method for
Solving Large Non-Negative Least Squares Problems". Proc. Computer Science.

See Also

nmf, project

Examples

## Not run:
# compare solution to base::solve for a random system
X <- matrix(runif(100), 10, 10)
a <- crossprod(X)
b <- crossprod(X, runif(10))
unconstrained_soln <- solve(a, b)
nonneg_soln <- nnls(a, b)
unconstrained_err <- mean((a %*% unconstrained_soln - b)^2)
nonnegative_err <- mean((a %*% nonneg_soln - b)^2)
unconstrained_err
nonnegative_err
all.equal(solve(a, b), nnls(a, b))

# example adapted from multiway::fnnls example 1
X <- matrix(1:100,50,2)
y <- matrix(101:150,50,1)
beta <- solve(crossprod(X)) %*% crossprod(X, y)
beta
beta <- nnls(crossprod(X), crossprod(X, y))
beta

# learn nmf model and do bvls projection
data(hawaiibirds)
w <- nmf(hawaiibirds$counts, 10)@w
h <- project(w, hawaiibirds$counts)
# now impose upper bound on solutions
h2 <- project(w, hawaiibirds$counts, upper_bound = 2)

## End(Not run)
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project Project a model onto new data

Description

Equivalent to predict method for NMF, but requires only the w matrix to be supplied and not the
entire NMF model. Use NNLS to project a basis factor model onto new samples.

Usage

project(w, data, L1 = 0, L2 = 0, mask = NULL, upper_bound = 0, ...)

Arguments

w matrix of features (rows) by factors (columns), corresponding to rows in data

data a dense or sparse matrix

L1 L1/LASSO penalty

L2 L2/Ridge penalty

mask masking on data values

upper_bound maximum value permitted in least squares solutions, essentially a bounded-
variable least squares problem between 0 and upper_bound

... arguments passed to predict.nmf

Details

See nmf for more info, as well as the predict method for NMF.

RcppML RcppML: Rcpp Machine Learning Library

Description

High-performance non-negative matrix factorization and linear model projection for sparse matri-
ces, and fast non-negative least squares implementations

Author(s)

Zach DeBruine



r_matrix 21

r_matrix Random transpose-identical dense/sparse matrix

Description

Generate a random sparse matrix, just like Matrix::rsparsematrix or (matrix(runif(nrow *
ncol), nrow,)), but much faster. Generation of transpose-identical matrices is also supported
without additional computational cost.

Usage

r_matrix(nrow, ncol, transpose_identical = FALSE)

r_sparsematrix(
nrow,
ncol,
inv_density,
transpose_identical = FALSE,
pattern = FALSE

)

Arguments

nrow number of rows

ncol number of columns
transpose_identical

should the matrix be transpose-identical?

inv_density an integer giving the inverse density of the matrix (i.e. 10 percent density corre-
sponds to inv_density = 10). Density is probabilistic, not exact. See examples.

pattern should a pattern matrix (Matrix::ngCMatrix) be returned? If not, a Matrix::dgCMatrix
with random uniform values will be returned.

See Also

r_unif

r_matrix, r_unif, r_binom

Examples

# generate a simple random matrix
A <- r_matrix(10, 10)

# generate two matrices that are transpose identical
set.seed(123)
A1 <- r_matrix(10, 100, transpose_identical = TRUE)
set.seed(123)
A2 <- r_matrix(100, 10, transpose_identical = TRUE)
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all.equal(t(A2), A1)

# generate a transpose-identical pair of speckled matrices
set.seed(123)
A <- r_sparsematrix(10, 100, inv_density = 10, transpose_identical = TRUE)
set.seed(123)
A <- r_sparsematrix(100, 10, inv_density = 10, transpose_identical = TRUE)
all.equal(t(A), A)
Matrix::isSymmetric(A[1:10, 1:10])
heatmap(as.matrix(A), scale = "none", Rowv = NA, Colv = NA)

# note that density is probabilistic, not absolute
A <- replicate(1000, r_sparsematrix(100, 100, 10))
densities <- sapply(A, function(x) length(x@i) / prod(dim(x)))
plot(density(densities)) # normal distribution centered at 0.100
range(densities)

r_sample Random distributions and samples

Description

r_sample is just like base::sample, only faster. r_sample takes a sample of the specified size
from the elements of x using replacement if indicated.

These functions generate random distributions (uniform, normal, or binomial) just like their base R
counterparts (runif, rnorm, and rbinom), but faster.

Usage

r_sample(x, size = NULL, replace = FALSE)

r_unif(n, min = 0, max = 1)

r_binom(n, size = 1, inv_prob = 2)

Arguments

x either a positive integer giving the number of items to choose from, or a vector
of elements to shuffle or from which to choose. See ’Details’.

size number of trials (one or more)

replace should sampling be with replacement?

n number of observations

min finite lower limit of the uniform distribution

max finite upper limit of the uniform distribution

inv_prob inverse probability of success for each trial, must be integral (e.g. 50 percent
success = 2, 10 percent success = 10)
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Details

All RNGs make use of Marsaglia’s xorshift method to generate random integers.

r_unif takes the random integer and divides it by the seed and returns the floating decimal portion
of the result.

See Also

r_matrix, r_sparsematrix

Examples

# draw all integers from 1 to 10 in a random order
sample(10)

# shuffle a vector of values
v <- r_unif(3)
v
v_ <- sample(v)
v_

# draw values from a vector
sample(r_unif(100), 3)

# draw some integers between 1 and 1000
sample(1000, 3)

# simulate a uniform distribution
v <- r_unif(10000)
plot(density(v))

# simulate a binomial distribution
v <- r_binom(10000, 100, inv_prob = 10)
hist(v)
sum(v) / length(v)
# ~10 because 100 trials at 10 percent success odds
# is about 10 successes per element

# get successful trials in a bernoulli distribution
v <- r_binom(100, 1, 20)
successful_trials <- slot(as(v, "nsparseVector"), "i")
successful_trials

simulateNMF Simulate an NMF dataset

Description

Generate a random matrix that follows some defined NMF model to test NMF factorizations.
Adapts methods from NMF::syntheticNMF.
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Usage

simulateNMF(nrow, ncol, k, noise = 0.5, dropout = 0.5, seed = NULL)

Arguments

nrow number of rows

ncol number of columns

k true rank of simulated model

noise standard deviation of Gaussian noise centered at 0 to add to input matrix. Any
negative values after noise addition are set to 0.

dropout density of dropout events

seed seed for random number generation

Value

list of dense matrix A and true w and h models

sparsity Compute the sparsity of each NMF factor

Description

Compute the sparsity of each NMF factor

Usage

sparsity(object, ...)

## S4 method for signature 'nmf'
sparsity(object, ...)

Arguments

object object of class nmf.

... additional parameters

Details

For nmf models, the sparsity of each factor is computed and summarized or w and h matrices. A
long data.frame with columns factor, sparsity, and model is returned.
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subset,nmf-method nmf class methods

Description

Given an NMF model in the form A = wdh, project projects w onto A to solve for h.

Usage

## S4 method for signature 'nmf'
subset(x, i, ...)

## S4 method for signature 'nmf,ANY,ANY,ANY'
x[i]

## S4 method for signature 'nmf'
head(x, n = getOption("digits"), ...)

## S4 method for signature 'nmf'
show(object)

## S4 method for signature 'nmf'
dimnames(x)

## S4 method for signature 'nmf'
dim(x)

## S4 method for signature 'nmf'
t(x)

## S4 method for signature 'nmf'
sort(x, decreasing = TRUE, ...)

## S4 method for signature 'nmf'
prod(x, ..., na.rm = FALSE)

## S4 method for signature 'nmf'
x$name

## S4 method for signature 'nmf,list'
coerce(from, to)

## S4 method for signature 'nmf'
x[[i]]

## S4 method for signature 'nmf'
predict(object, data, L1 = 0, L2 = 0, mask = NULL, upper_bound = NULL, ...)
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Arguments

x object of class nmf.

i indices

... arguments passed to or from other methods

n number of rows/columns to show

object fitted model, class nmf, generally the result of calling nmf, with models of equal
dimensions as data

decreasing logical. Should the sort be increasing or decreasing?

na.rm remove na values

name name of nmf class slot

from class which the coerce method should perform coercion from

to class which the coerce method should perform coercion to

data dense or sparse matrix of features in rows and samples in columns. Prefer
matrix or Matrix::dgCMatrix, respectively

L1 a single LASSO penalty in the range (0, 1]

L2 a single Ridge penalty greater than zero

mask dense or sparse matrix of values in data to handle as missing. Prefer Matrix::dgCMatrix.
Alternatively, specify "zeros" or "NA" to mask either all zeros or NA values.

upper_bound maximum value permitted in least squares solutions, essentially a bounded-
variable least squares problem between 0 and upper_bound

Details

For the alternating least squares matrix factorization update problem A = wh, the updates (or
projection) of h is given by the equation:

wTwh = wAj

which is in the form ax = b where a = wTw x = h and b = wAj for all columns j in A.

Any L1 penalty is subtracted from b and should generally be scaled to max(b), where b = WAj

for all columns j in A. An easy way to properly scale an L1 penalty is to normalize all columns in
w to sum to the same value (e.g. 1). No scaling is applied in this function. Such scaling guarantees
that L1 = 1 gives a completely sparse solution.

There are specializations for dense and sparse input matrices, symmetric input matrices, and for
rank-1 and rank-2 projections. See documentation for nmf for theoretical details and guidance.

Value

object of class nmf

Author(s)

Zach DeBruine
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References

DeBruine, ZJ, Melcher, K, and Triche, TJ. (2021). "High-performance non-negative matrix factor-
ization for large single-cell data." BioRXiv.

See Also

nnls, nmf

Examples

## Not run:
w <- matrix(runif(1000 * 10), 1000, 10)
h_true <- matrix(runif(10 * 100), 10, 100)
# A is the crossproduct of "w" and "h" with 10% signal dropout
A <- (w %*% h_true) * (r_sparsematrix(1000, 100, 10) > 0)
h <- project(w, A)
cor(as.vector(h_true), as.vector(h))

# alternating projections refine solution (like NMF)
mse_bad <- mse(w, rep(1, ncol(w)), h, A) # mse before alternating updates
h <- project(w, A)
w <- t(project(h, t(A)))
h <- project(w, A)
w <- t(project(h, t(A)))
h <- project(w, A)
w <- t(project(h, t(A)))
mse_better <- mse(w, rep(1, ncol(w)), h, A) # mse after alternating updates
mse_better < mse_bad

## End(Not run)

summary,nmf-method Summarize NMF factors

Description

summary method for class "nmf". Describes metadata representation in NMF factors. Returns object
of class nmfSummary. Plot results using plot.

Usage

## S4 method for signature 'nmf'
summary(object, group_by, stat = "sum", ...)

## S3 method for class 'nmfSummary'
plot(x, ...)
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Arguments

object an object of class "nmf", usually, a result of a call to nmf

group_by a discrete factor giving groupings for samples or features. Must be of the same
length as number of samples in object$h or number of features in object$w.

stat either sum (sum of factor weights falling within each group), or mean (mean
factor weight falling within each group).

... arguments passed to or from other methods

x nmfSummary object, the result of calling summary on an nmf object

Value

data.frame with columns group, factor, and stat
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