Package: RcppML 0.5.6

RcppML: Rcpp Machine Learning Library

Fast machine learning algorithms including matrix factorization and divisive clustering for large sparse and dense matrices.

Authors:Zach DeBruine [aut, cre]

RcppML_0.5.6.tar.gz
RcppML_0.5.6.zip(r-4.5)RcppML_0.5.6.zip(r-4.4)RcppML_0.5.6.zip(r-4.3)
RcppML_0.5.6.tgz(r-4.4-x86_64)RcppML_0.5.6.tgz(r-4.4-arm64)RcppML_0.5.6.tgz(r-4.3-x86_64)RcppML_0.5.6.tgz(r-4.3-arm64)
RcppML_0.5.6.tar.gz(r-4.5-noble)RcppML_0.5.6.tar.gz(r-4.4-noble)
RcppML_0.5.6.tgz(r-4.4-emscripten)RcppML_0.5.6.tgz(r-4.3-emscripten)
RcppML.pdf |RcppML.html
RcppML/json (API)

# Install 'RcppML' in R:
install.packages('RcppML', repos = c('https://zdebruine.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/zdebruine/rcppml/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:

On CRAN:

clusteringmatrix-factorizationnmfrcpprcppeigensparse-matrix

10.49 score 96 stars 45 packages 115 scripts 6.9k downloads 28 exports 8 dependencies

Last updated 1 years agofrom:5449a5b479. Checks:OK: 1 WARNING: 5 NOTE: 3. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 21 2024
R-4.5-win-x86_64WARNINGOct 21 2024
R-4.5-linux-x86_64WARNINGOct 21 2024
R-4.4-win-x86_64WARNINGOct 21 2024
R-4.4-mac-x86_64WARNINGOct 21 2024
R-4.4-mac-aarch64WARNINGOct 21 2024
R-4.3-win-x86_64NOTEOct 21 2024
R-4.3-mac-x86_64NOTEOct 21 2024
R-4.3-mac-aarch64NOTEOct 21 2024

Exports:alignbipartiteMatchbipartitionbiplotcoercecosinecrossValidatedclustevaluateheadlnmfmsenmfnnlspredictprojectr_binomr_matrixr_sampler_sparsematrixr_unifshowsimulateNMFsortsparsitysubsetsummaryt

Dependencies:evaluatehighrknitrlatticeMatrixRcppxfunyaml

Getting Started with NMF

Rendered fromgetting_started.Rmdusingknitr::rmarkdownon Oct 21 2024.

Last update: 2022-08-19
Started: 2021-10-12

Learning and Annotating NMF Models

Rendered fromannotating_nmf_models.Rmdusingknitr::rmarkdownon Oct 21 2024.

Last update: 2022-08-19
Started: 2022-08-19

Robust NMF with random initializations

Rendered fromrobust_nmf.Rmdusingknitr::rmarkdownon Oct 21 2024.

Last update: 2022-08-19
Started: 2021-10-21

Readme and manuals

Help Manual

Help pageTopics
Align two NMF modelsalign align,nmf-method
Align two matrices with bipartite matchingalign_models
Acute Myelogenous Leukemia cellsaml
Bipartite graph matchingbipartiteMatch
Bipartition a sample setbipartition
Biplot for NMF factorsbiplot,nmf-method
Cosine similaritycosine
Cross-validation for NMFcrossValidate plot.nmfCrossValidate
Divisive clusteringdclust
Evaluate an NMF modelevaluate evaluate,nmf-method
Bird species frequency in Hawaiihawaiibirds
Linked non-negative matrix factorizationlnmf
Movie ratingsmovielens
Mean squared error of factor modelmse
Non-negative matrix factorizationnmf nmf, nmf-class
Non-negative least squaresnnls
Project a model onto new dataproject
Random transpose-identical dense/sparse matrixr_matrix r_sparsematrix
Random distributions and samplesr_binom r_sample r_unif
RcppML: Rcpp Machine Learning LibraryRcppML-package RcppML
Simulate an NMF datasetsimulateNMF
Compute the sparsity of each NMF factorsparsity sparsity,nmf-method
nmf class methods$,nmf-method coerce,nmf,list-method dim,nmf-method dimnames,nmf-method head,nmf-method predict,nmf-method prod,nmf-method show,nmf-method sort,nmf-method subset,nmf-method t,nmf-method [,nmf,ANY,ANY,ANY-method [[,nmf-method
Summarize NMF factorsplot.nmfSummary summary,nmf-method